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Abstract

This chapter considers action-oriented processing from a model-oriented standpoint. 
Possible relationships between action and cognition are reviewed in abstract or con-
ceptual terms. We then turn to models of their interrelationships and role in mediating 
cognitively enriched behaviors. Examples of theories or models inspired by the action-
oriented paradigm are briefl y surveyed, with a particular focus on  ideomotor theory and 
how it has developed over the past century. Formal versions of these theories are intro-
duced, drawing on formulations in systems biology, information theory, and dynamical 
systems theory. An attempt is made to integrate these perspectives under the enactivist 
version of the Bayesian brain; namely,  active inference. Implications of this formalism 
and, more generally, of action-oriented views of cognition are discussed, and open is-
sues that may be usefully pursued from a formal perspective are highlighted.

Existing Schema for Action and Cognition

Before considering  the form and consequences of models that take an action-
oriented view of cognition, it is worth considering how the relationship be-
tween these two processes has been described. Here, we consider four schemata 
which capture different notions of how cognition and action could be coupled 
(Figure 10.1). It is important to stress that these schemata are not models but 
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rather depictions of different views on cognition and action. Crucially, differ-
ences in the schemata do not refl ect a fundamental difference in the nature of 
the coupling but rather in how cognition and action are defi ned.

At one extreme, in Figure 10.1a, the two processes can be considered to 
be entirely independent processes: action is simply the behavioral output of 
the cognitive process (e.g., in the classical sandwich conception of the mind). 
In this open-loop formulation, action does not, and indeed cannot, infl uence 
cognition. Although not explicitly stated, the scheme depicted in Figure 10.1a 
is implicitly assumed in many models of high-level human cognitive functions 
used in behavioral and imaging experiments: input is carefully manipulated 
and output (action) is kept to a minimum (e.g., key pressing) in order to focus 
on internal processes. Here, action is considered to be a necessary output to 
disclose internal operations. For example, in a typical experiment that inves-
tigates language processing, individuals are presented with written or spoken 
words/sentences and asked to make a key press decision about them. Such 
studies, which still constitute the majority of cognitive science and neurosci-
ence studies of high-level cognition, are completely silent as to whether action 
might play a role.

Alternative approaches (Figure 10.1b–d) consider how action and cognition 
depend on each other. In addition, action can be explicitly considered to be a 
subset of cognition or a largely overlapping process (Figure 10.1b and c). This 
commonly held view defi nes cognition as information processing à la Neisser. 
Accordingly, most, but not all, cognition relates to action: cognition infl uences 
action, and action infl uences cognition. This infl uence is typically, but not al-
ways, constructive: cognition and action can exist in harmony without collaps-
ing into one another. They are heavily intertwined, but they are not the same, 
and none exists solely for the benefi t of the other. Just like attention, working 
memory, and consciousness, cognition and action are intimately related, yet 
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Figure 10.1 Schemata of action-cognition relationships.
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independent. The fi nal scheme (Figure 10.1d) represents a more “enactive” 
form: cognition is a subset of action and/or cognition subserves action.

In these schemata, action is often only considered as an external goal-direct-
ed movement (as opposed to an internal/mental action). Although actions are 
often defi ned as goal-directed movements, they could also be considered on a 
continuum between motor movements and goal-directed actions. For example, 
the  babbling infant may produce the same syllable [ti:] as a one-year-old re-
peating a word and an older child asking for the beverage. In development, 
successively more distant  goals and predictions (e.g., getting tea, ordering on 
behalf of someone in a restaurant to please that person) seem to be coupled 
with the movement representations to yield the cognitive action representation. 
Because of the relationship between their putative neuronal circuit represen-
tations, it may make sense to see movements and goal-directed actions on a 
continuum.

From a cognitive perspective, an action results from mediating processes 
that constitute proximal causes of the action relative to the distal stimulus and 
subsequent sensory processes. An action emanating from a cognitive system 
has an important conceptual interpretation above and beyond its motor features 
(often public or social); for example, donating to charity over the Internet. 
Such an action includes motoric features (reading a screen and typing on a 
keyboard), while invoking the notion of moving money from one’s bank ac-
count to an organization to help relieve suffering in a distant group of people. 
These latter aspects play an important role in conceiving of the action in the 
fi rst place: donating to charity would not be possible without understanding 
money, charities, donation, and suffering—and all the causal relations among 
them—and executing the resultant action effectively and monitoring whether 
the intended outcome occurred (see Barsalou, this volume). Arguably the most 
important actions that humans perform are ones that acquire physical resources 
(e.g., food, shelter, wealth), alter the physical environment (e.g., clearing land, 
farming), and develop and use technology (tools) to achieve goals as well as 
establish, maintain, and revise social relations and social status. Crucially, and 
especially as a result of  language and  communication, these actions call on 
cultural institutions, artifacts, and knowledge.

Models of Action-Oriented Processing

Very few models are actually based on a relationship between action and cog-
nition, as illustrated in the third schemata (Figure 10.1c). One important ex-
ample of an attempt to close the loop connecting brain and environment is the 
 ideomotor theory, as attributed to Lotze (1852), Harless (1861),  and James 
(1890). Its original formulation tried to explain how people acquire  voluntary 
control of their actions, even though they do not seem to have privileged (con-
scious) access to the motor system. The idea is that agents start interacting with 
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their environment by  motor babbling (executing random movements), sensing 
the reafferent information resulting from these movements (i.e., the self-pro-
duced changes in perception), and creating bidirectional associations between 
the neural pattern producing the movement and the neural pattern representing 
the reafferent information ( Hebbian  learning). Given that agents can activate 
the reafferent codes endogenously by imagining the respective events, these 
bidirectional associations provide them with retrieval cues to the associated 
motor patterns. In such a way, the movements can now be executed intention-
ally. The  theory of event coding (TEC) has extended and generalized this ap-
proach in various ways (Hommel et al. 2001). First, it claims that perceptual 
codes and action patterns are represented in a distributed, nonsymbolic fash-
ion. Second, it assumes that perceptual codes and action patterns are integrated 
into sensorimotor event fi les; that is, into networks of codes representing the 
perceptual and movement-related aspect of a given sensorimotor event. Third, 
it assumes that to represent a given event, the components of a given event fi le 
are weighted according to their relevance for the given action goal (intentional 
weighting; Memelink and Hommel 2013). For instance, when grasping an ob-
ject, shape, and location, features will be weighted more strongly (and thus 
contribute more to the representation of the object-grasping event) than color 
features. Finally, TEC claims that  perception and action are the same thing: 
the process of perceiving an event entails moving in ways that orient one’s 
receptors toward the event of interest, so as to register its perceptual features, 
and the process of producing an event (i.e., acting) involves moving in ways 
to generate particular perceptual features which are then sensed and compared 
to the expected outcomes. That is, both perception and action actively gener-
ate reafferent input but the specifi city to which this input is predicted is often 
lower for what we call perception than for what we call action. In essence, TEC 
assumes that the basis of human cognition is sensorimotor in nature (event 
fi les). However, it does not explicitly rule out the possibility of more abstract 
cognitive codes that are derived from event fi les.

Other models have been proposed that also make the link between action 
and cognition explicit. For example, models of sensorimotor representations 
of  grasping movements in frontoparietal cortex can be used to explain the per-
ception of actions as well as the “simulation” or “ mentalizing” about actions 
(Arbib et al. 2000; Jeannerod et al. 1995). A model of frontotemporal cortex 
shows the emergence of linked action-perception mechanisms from senso-
rimotor information and functional implications of such learning for  work-
ing  memory (Pulvermüller and Garagnani 2014). Hebb-type learning leads to 
a strengthening of neuronal connections in a pool of sensorimotor neurons, 
which implies that activity will be maintained longer in the pool. These mod-
els show how higher cognitive functions (mentalizing, memory, and so on) 
can develop in specifi c neuroanatomical structures on the basis of associative 
learning of correlated motor and sensory activity. Thus they provide concrete 
implementations of the functional parallelism between cognition and action. 
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Over and above accounting for the emergence of mechanisms for higher cog-
nition, neuroanatomically grounded action-perception models may explain the 
specifi c and dissociable brain areas carrying particular  cognitive functions.

Here we have provided a few examples of theoretical approaches that link 
(or unify) action and cognition in conceptual terms. In what follows, we revisit 
the same ideas from a formal perspective, trying to identify the decomposition 
of states and their dynamics that constitute the problem at hand. In particular, 
we consider the  optimality principles inherent in  ideomotor theory and related 
developments.

Formal Models of Action and Cognition

To consider   the nature and utility of formal models, we start from basic princi-
ples and address the usefulness of a formal approach at various levels. In brief, 
we fi rst appeal to systems biology to identify the sorts of variables (states) 
that one needs to consider when modeling an agent immersed in its proximate 
environment. Equipped with a partition of states, we then utilize optimality 
principles to defi ne classes of state (“as if”) theories of action and cognition; 
where each state theory is defi ned in terms of the quantity that is optimized. 
Finally, each state theory entails a series of process theories that hypothesize a 
particular (computational or physiological) process that realizes the optimiza-
tion. Having defi ned a set of process models, it is then possible to test them in 
relation to the empirical behaviors that each predicts.

An example of an optimality principle would be  Bayes optimality (i.e., ideal 
Bayesian observer assumptions), where the state theory could correspond to 
the  Bayesian brain hypothesis, in which the brain behaves as if it is trying to 
maximize Bayesian model evidence. The corresponding process models could 
then include  predictive coding or (stochastic) population coding that make 
very different predictions about the neuronal responses that would be elicited 
by a stimulus. We use this example (among others) to see how the models 
could be augmented to accommodate an action-oriented paradigm.

State Spaces and Systems Biology

Figure 10.2 illustrates the partition of states necessarily implied by a system 
that is acting on its environment. This partition considers the distinction be-
tween external states of the world that are hidden from the internal states of 
an agent—in the sense that external states are hidden behind sensory states. 
Internal states could correspond to neuronal activity, connection strengths, 
or any other neuronal states characterizing the brain at one point in time. 
Crucially, sensory states are caused by external states that subsequently change 
internal states. Conversely, internal states cause changes in  agential states (e.g., 
actuators or muscles), which then cause changes in external states. Sensory and 
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agential states, therefore, couple the world to the brain in a circular fashion, 
inducing a cycle of action and perception (Fuster 1990). Mathematically, these 
states insulate the internal states from the external states (and are known tech-
nically as a  Markov blanket).

The connections or edges in Figure 10.2 denote causal or statistical de-
pendencies and render the graph a Bayesian network or graphical model of 
the situated agent. These dependencies are most generally described in terms 
of (stochastic) differential equations. These equations of motion describe the 
evolution of hidden states, the way that sensory states respond to hidden states 
and the dynamics of internal states and agential states. The upper two sets of 
equations constitute a description of the world and how it causes sensory im-
pressions. The lower two sets of equations (for internal and agential states) can 
now be regarded as a formal model of  perception and action.

Optimality Principles

Optimality principles are so ubiquitous in the physical sciences that it is dif-
fi cult to think of an example in physics that does not rely on an optimality 
principle. Important examples include Hamilton’s principle of least action, 
which underlies all classical motion and thermodynamic laws, which underlie 
the behavior of systems at thermodynamic equilibrium in statistical physics. 
In our case, we can defi ne a state theory of action and perception by casting 
the equation of motion for internal and agential states as a gradient descent (or 
ascent) on some function of internal and sensory states. This presupposes that 
the dynamics of the system or situated agent—say, the sensorimotor loop and/
or the neuronal system—can be derived from a variational principle; that is, it 

a = agential states
s = sensorial states

x = external states
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x2

x3

x4

μ = internal states

μ2

μ1 μ3

μ4

∂ ∂ = ( )x t f x ax ,

∂ ∂ = ( )s t f x as ,

∂ ∂ = ( ) = ∂ ( ) ∂a t f s F s aa , ,μ μ

∂ ∂ = ( )μ μμt f s,

s

a

Figure 10.2 Partition of states necessarily implied by a system that is acting within 
its environment.
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assumes we can identify some quantity that the system is trying to optimize. 
The existence of this quantity (known as a Lyapunov function) is generally 
guaranteed for the sorts of systems in which we are interested. Identifying the 
quantity (or quantities) that the system is trying to optimize is crucial because 
the implicit dynamics (action and perception) will lead to fundamentally dif-
ferent sorts of behavior.

Which Optimality Principle?

There are a range of optimality principles or objective (Lyapunov) functions 
one might consider. These range from information theoretic quantities based 
upon the principle of maximum information transfer, or minimum redundancy, 
through to functions that explicitly accommodate goals, such as utility func-
tions. Some of the more prevalent information theoretic functions are reviewed 
by Jost (this volume). Most suppose that internal states should possess the 
greatest mutual information with the hidden or sensory states. In other words, 
one should be able to predict the external states, given the internal states. An 
important aspect of these optimality functions is the constraints or  priors under 
which mutual information is maximized. In Pezzulo et al. (this volume), we see 
a ubiquitous constraint; namely, sensations are caused by a small number of 
external states at any one time. This  sparsity assumption can be used to opti-
mize the form of interactions among internal states using a variety of schemes 
that lead to receptive fi eld properties and architectures that are remarkably 
reminiscent of functional anatomy.

In  optimal control theory and  reinforcement learning, the objective func-
tion is generally cast as a utility or  reward function, also referred to as nega-
tive cost. This optimality function speaks more to action than perception, but 
perception is usually deployed in the context of some state estimation that 
implicitly appeals to information theory or the Bayesian brain.

The Bayesian brain hypothesis assumes that the optimality function is either 
Bayesian model evidence or approximations such as  variational free energy. 
Variational free energy is an approximation to the evidence for a model im-
plicit in the internal states that is evident in sensory states at any given time. 
This means that if internal states minimize variational free energy, they are 
implicitly maximizing an approximation to Bayesian model evidence and will 
look as if they are performing (approximate) Bayesian inference, so that inter-
nal states come to represent external states.

Many different optimality principles have been proposed to understand hu-
man and animal cognition, and the question of which optimality principle to 
adopt may appear unresolved. Here, we address some of the key issues in this 
area. For instance, in some schemes, surprise (i.e.,  prediction error) is mini-
mized, as in the Bayesian brain hypothesis, whereas other proposals empha-
size the resolution of uncertainty by maximizing Bayesian surprise or informa-
tion gain. In robotics or  machine learning settings, for example,  exploratory 
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actions can be cast as satisfying  curiosity (Schmidhuber 1991b). More gener-
ally, optimization principles could emphasize the gain of relevant information 
or the accuracy and scope of predictions. Either could be subordinate to the 
other. An agent could try to gather information to improve its predictions, or 
it could build predictions to acquire new information. Jost (2004) argues that 
a system could satisfy these two goals by addressing them on different time-
scales. Evolutionary thinking may help us understand the hierarchical relation-
ship between different goals. Short-term predictions provide a reference or 
set point for homeostasis (or allostasis), whereas relevant information could 
provide opportunities for reproductive success in the long term, which is not 
a homeostatic affair. According to  evolutionary biology, fi tness (as expressed 
by the actual or expected number of descendants) is the most basic principle. 
In this setting, survival of an individual (a homeostatic affair) is necessary for, 
but subordinate to, reproduction. Therefore, from this perspective, the gain 
of relevant information should be the overarching principle, and homeostasis 
should be subordinate.

The optimality principles considered above all have particular biases toward 
perception or action. For example, the  Infomax principle and the Bayesian 
brain hypothesis do not accommodate action, whereas optimal control theory 
and  reinforcement learning do not easily accommodate  perceptual inference. 
Is there any way to integrate these optimality principles into a common frame-
work or state theory? One approach is to recast the optimization of action in 
relation to reward or utility functions as an inference problem. This is known 
as  planning as inference. The advantage of this is that one can gracefully 
subsume action or policy selection (i.e., planning) and state estimation (i.e., 
perception) within the same optimality principle; namely, the Bayesian brain. 
Furthermore, it is relatively easy to show that optimizing internal states with 
respect to the evidence for a  generative model implicitly maximizes the mutual 
information between internal and external states, subject to (prior) constraints 
inherent in the generative model. This brings us to  active inference described 
by Friston (this volume), which is closely related to the notion of  empower-
ment (an information theoretic principle that explicitly conditions mutual in-
formation on action).

Active Inference

Active inference can be regarded as the action-oriented (enactivist) version of 
the Bayesian brain hypothesis; it requires both action and perception to opti-
mize Bayesian model evidence. Bayesian model evidence (the log probability 
of some sensory states under a generative model) is also known in information 
theory as (negative) surprise. This means that approximate Bayesian inference 
is another way of saying agents act to avoid surprising sensations (i.e., ho-
moeostasis). Clearly this provides an impoverished account of goal-directed 
and mindful behavior. However, surprise rests on the violation of predictions, 
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where predictions imply prior beliefs about what will happen. Formally, the 
 generative model is specifi ed in terms of likelihood and prior beliefs. Put sim-
ply, this means that there are as many classes of optimality as there are prior 
beliefs an agent might entertain about hidden states and their sensory conse-
quences (e.g., garnering information that may enhance reproductive success). 
In other words, we can now express any optimality function from the previous 
section as a prior  belief. The only thing that has changed is that the optimal-
ity principle is described in terms of a generative model, allowing the same 
objective function (Bayesian model evidence or its free energy approximation) 
to be optimized in all cases. Casting optimal control or  Infomax principles in 
terms of  active inference does not fundamentally change the principle; it just 
provides a common framework in which to model the optimization dynamics 
that underlie action and perception. In short, instead of asserting that agents 
maximize utility, we can say that agents believe they will maximize utility and 
then realize those beliefs through action. This emphasizes the fact that utility 
functions and prior constraints—necessary to defi ne information theoretic im-
peratives—can be formulated as part of the generative model embodied in the 
agent’s functional anatomy.

One of the most promising and generic  priors arises in optimal control theo-
ry and  decision theory. Known as KL or  risk-sensitive control, it simply states 
that “I act (believe I will act) to minimize the probabilistic difference between 
preferred outcomes and those I predict given current evidence about the state 
of the world.” The nice thing about this prior is that it gracefully accommo-
dates reward (or utility) and epistemic value (or information gain). In other 
words, optimizing internal and  agential states under this prior leads naturally 
to a Bayes optimal mixture of explorative and exploitative behavior.

Implications of the Modeling Approaches for a Paradigm Shift

Building on these examples of both formal and informal modeling approaches, 
we address the implications of these accounts for the role of action in cogni-
tion, both conceptually and practically. Areas are highlighted where the mod-
eling approaches provide an account or insight that may differ from other ac-
counts of an action-oriented cognition.

Implication 1: From Open-Loop to Closed-Loop Theories

The fi rst implication  that is clear from the system depicted in Figure 10.2 is 
that the formal account describes a closed-loop scheme. In other words, the 
external states change the sensorial states, which change the internal states, 
which change the agential states, which change the external states, etc. In the 
closed-loop account, perceiving the world produces states that produce action 
which in turn change the world, causing the loop to iterate. This closed-loop 
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account is distinct from an open-loop account, where the external states change 
the sensorial states which change the internal states. Note that an open-loop ac-
count can be accommodated by the scheme in Figure 10.2 simply by removing 
the agential state. This has important implications, which we return to later. In 
the open-loop account, the primary interest is in how the individual responds 
to the world. The effects on action are largely irrelevant as are effects of action 
on the world. Action can occur but only as a response that serves to provide 
data on underlying cognitive mechanisms. The consideration of whether the 
system is closed or open loop has implications for how cognitive scientists de-
sign and interpret data from experiments. In practice, most research in cogni-
tive science and cognitive neuroscience adopts the open-loop approach, in the 
sense that the paradigms are not constructed to assess closed-loop performance 
and effects. If cognitive mechanisms have evolved and developed to support 
closed-loop performance, as suggested, then theories assuming only open-loop 
processes may be misguided. One potential paradigm shift would be to study 
cognitive mechanisms in closed-loop paradigms. Although this will present 
major methodological challenges (e.g., considerable increases in complexity 
for design, control, data, analysis, etc.), we might fi nd that our understand-
ings of cognitive mechanisms change considerably. One cognitive domain in 
which such a change from an open-loop to a closed-loop perspective may be 
especially important is language, which we use to illustrate some key points.

Language as Action

In linguistics and psycholinguistics,  language is often considered to be a sys-
tem of lexical entries and rules that determine the hierarchical structuring of 
morphological, lexical, and phrasal units (as is evident in speech or text), dis-
tinct from its actual implementation in action and perception. Moreover, lan-
guage comprehension has traditionally been studied separately from produc-
tion (and the majority of studies concern comprehension with only a smaller 
number of studies concerning production). However, it is crucial to see that 
similarly complex combinatorial schemes may be at work in the linguistic 
and general action domains (Jackendoff 2011; Pulvermüller and Fadiga 2010) 
and that, when language is used and learned, it is produced and understood in 
face-to-face communicative contexts, where production and comprehension 
are intertwined (e.g., gestures, facial, and bodily movements) between conver-
sational partners to fulfi ll specifi c communicative goals. These actions comple-
ment  speech in real-world contexts and are part and parcel with the linguistic 
signal. The diffi culty in separating the linguistic from communicative informa-
tion becomes especially clear when we consider languages that can only be 
transmitted in a face-to-face situation, such as  sign languages, but it is just as 
relevant for spoken languages (Vigliocco, Perniss et al. 2014).

Finally, language can be viewed as a tool for  communicative action and inter-
action (e.g., Austin 1975; Searle 1969), and it is indeed the communicative and 
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social context that determines whether an utterance such as “water” functions as 
a naming action or as a polite request bringing about a desired response. Recent 
work demonstrates that these different social-communicative functions of lan-
guage have different brain-mechanistic bases (see Pulvermüller, this volume).

From the perspective of an action-oriented view of cognition, we see im-
mediately that a traditional linguistic defi nition of  language is too narrow. 
Viewing language as action has a number of important consequences and 
benefi ts. First, taking a closed-loop approach to language processing, we can 
consider language production and comprehension as forms of action and ac-
tion perception. For example, Pickering and Garrod (2013a) specifi cally argue 
that in language processing, speakers construct  forward models of their actions 
before they execute those actions, and perceivers of others’ actions (listeners) 
covertly imitate those actions and construct forward models of those actions. 
Further, Pickering and Garrod have shown how such a closed-loop approach 
to language production and comprehension can account for a number of psy-
cholinguistic phenomena, in terms of how speakers/listeners interweave pro-
duction and comprehension processes as well as how production-based predic-
tions are used to monitor the upcoming utterances in dialogue.

Second, and more broadly, an action-oriented closed-loop view of commu-
nication opens up new directions in research that use real-world stimuli where 
the linguistic content expressed in  speech but also co-occurring hands, facial, 
and body actions are part of the  communicative actions. Regarding the role 
of these additional actions such as co-speech gestures, there is evidence that 
they are integrated during online spoken comprehension (Kelly et al. 2010; see 
review by Ozyurek 2014). It has further been shown that they provide a criti-
cal cue in vocabulary acquisition such that pointing to objects by infants is a 
precursor to learning objects’ names (Ozçalıskan and Goldin-Meadow 2009).

These different approaches all appeal to the notion that the object of inves-
tigation (language) cannot be defi ned in the traditional reductionist way (rule 
governed concatenation of symbols). Instead, they should be seen in the con-
text of (and serving the function of)  communication. Thus these approaches 
call for new methods to study language in real-world contexts.

Implication 2: Mental Representations as 
Inferences about External States

From the biological system account described above and shown in Figure 10.2, 
one can see immediately that internal states must represent external states. This 
is because prior preferences about outcomes can only be caused by agential 
states. However, agential states are only functional in sensory and internal 
states. This means that internal states must stand in for or represent (in some 
suffi ciency sense) external states. This simple observation dismisses radical 
accounts of  enactivism that preclude (implicit)  representations and leads us to 
a formal account of enactivism: namely, agential stages enact the predictions 
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represented by internal states, where internal states correspond to the produc-
tion of (conscious or  unconscious) inferences about external states based on 
sensory evidence. A convincing demonstration of the role of generative mod-
eling in  perception can be found in Nair and Geoffrey (2006). In brief, they 
show that when building a model capable of classifying handwritten digits, the 
inclusion of a  generative model of how handwritten digits are created greatly 
improves classifi cation performance (i.e., perceptual inference). This example 
speaks directly to the embodied nature of generative models the brain might 
employ to make sense of the sensations generated by (oneself and) others.

Implication 3: The Key Role of Agential States

From the system biology approach, one can see easily the distinction between 
enactivist and cognitivist formulations by considering the graphical formula-
tion with and without agential states. If one simply removes the agential states 
(or action) from the system, one can see that the system is still capable of 
producing lots of interesting inference and (deep) learning. This would be con-
sistent with the vast literature on perception and cognition that does not rely 
on active sampling. However, as soon as we place agential states into the mix, 
we now have the interesting issue of how a Bayesian brain would cope when it 
can choose the sensory evidence to sample. A key aspect of this is that cogni-
tive attributes, such as the value of information,  curiosity, and  intrinsic reward, 
only have meaning in the  enactivism paradigm. For example, to address the 
exploitation-exploration dilemma, one has to account for action. In a similar 
vein, visual search paradigms would not have any meaning from a purely per-
ceptual or cognitivist perspective. Although it is clear that some inference and 
cognition can be performed by the system without action, speaking against a 
pure enactivist account, it is also evident that action has the potential to alter 
perception and cognition radically. This is perhaps most evident in the ability 
of the agent to conduct an active search to explore the environment during 
learning, maximizing the information gain from the senses through acting and 
moving in the environment. In other words, with action, the agent is able to ex-
plore the environment, altering the information about the environment that the 
internal states can access through the sensorial states. Indeed, there is a large 
literature from robotics that demonstrates this to be the case (Tsotsos 1992; 
Shubina and Tsotsos 2010).

There seems to be little disagreement that action is important for endowing 
artifi cial agents with  cognitive capabilities. Several ideas about how to gain 
additional information from movement have been explored during the last de-
cades. One example is  active  vision, in which the combination of sensor read-
ings from different viewing angles allows higher recognition accuracy than 
using each of the single readings (Tsotsos 1992; Shubina and Tsotsos 2010). 
In  robotics, the improvement in performance with active visual search is an 
existence proof that the action-oriented approach is feasible. More importantly, 

From “The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science,” 
Andreas K. Engel, Karl J. Friston, and Danica Kragic, eds. 2016. Strüngmann Forum Reports, vol. 18, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03432-6. 



 Action-Oriented Models of Cognitive Processing 171

the behavior of these robots shows what can be accomplished within this para-
digm. An earlier and equally impressive example is that of the  object recogni-
tion strategy implemented by Wilkes and Tsotsos (1992). Here, origami objects 
piled in a jumble can be individually recognized by a camera mounted on a 
robot arm that can purposefully move about the pile, selecting viewpoints and 
object characteristics that are used to isolate and identify them. Related ap-
proaches in robotics and computer science could generate new predictions with 
respect to the paradigm shift toward a more action-oriented view of cognition. 
For example, it has been shown that the ability to associate behavior with a 
stimulus is intractable in the general sense without  attention (Tsotsos 1995, 
2011). This suggests that future theories of attention must be broad enough to 
handle the requirements of an action-oriented paradigm shift.

Demonstrations of the importance of action for learning and cognition are 
not limited to robotics and  computer  vision; they have been also demonstrated 
in humans and animal models. In humans, recent work on vocabulary acqui-
sition has shown that the learning of labels improves more when the infant 
actively explores the object being named by a caregiver, than when the child 
simply looks at the object without actively manually exploring it (Yu and 
Smith 2013, see also Dominey et al., this volume). In animals, the well-known 
experiment on vision performed by Held and Hein (1963) dramatically demon-
strates the importance of  active  vision. In this study, a pair of kittens was har-
nessed to a carousel: one was harnessed but stood on the ground and was able 
to move around by itself, whereas the other was placed in the gondola and was 
only able to move passively. The point of this experiment was that both kittens 
learned to see the world, receiving the same visual stimulation. The difference 
was that the one could move actively, while the other was moved passively. 
According to Held and Hein, only the self-moving kitten developed normal 
 visual perception. The other, which was deprived of self-actuated movement, 
could not develop depth perception. In short, self-movement was necessary to 
the development of normal visual perception with depth. Our movement in the 
world, the movement from here to there or there to here, gives the dimension 
of depth to mere visual sensations. The conclusion is that movement is the key 
to understanding  vision.

Future Opportunities

Real-World Experimentation in Humans

New theoretical frameworks require new experimental paradigms and novel 
analytical methods. Our predominant methods for studying the brain (e.g., the 
subtractive  approach in fMRI) associate particular areas of the brain with par-
ticular functions, but are less informative with respect to how regions form 
networks and how various networks interact. Methodological approaches need 
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to be formulated so that we can study the activation of simultaneously active 
neural circuits in the brain  in response to naturalistic stimuli. Other necessary 
advances include:

• Software for making and annotating naturalistic stimuli
•  Virtual reality to allow more naturalistic interaction while maintaining 

experimental control
• Use of mobile measures (eye-tracking, NIRS, EEG)
• Analytic tools for studying interacting brains with fMRI and MEG, and 

data-constrained modeling based on this data

Experimentation in Robotics

One subtle implication of the formulation offered above is that maximizing 
expected utility (through pragmatic actions) or epistemic values (through epis-
temic actions) can be cast as a pure inference problem (using standard Bayesian 
techniques). This naturally prescribes a space of process theories, each based 
on different forms of (approximate) Bayesian inference. Practically, this also 
allows robotic research to avail itself of mature algorithms and schemes that 
have been considered in great depth over the past decades in statistics and 
machine learning.
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